
Opinion dynamics on an adaptive random network

I. J. Benczik, S. Z. Benczik, B. Schmittmann, and R. K. P. Zia
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA

�Received 30 December 2008; published 6 April 2009�

We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In
contrast to the original voter model studied in regular lattices, we implement the opinion formation process in
a random network of agents in which interactions are no longer restricted by geographical distance. In addition,
we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents
can update their relationships. This update is determined by their own opinion, and by their preference to make
connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is
built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the
agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to
determine whether consensus or polarization will be the outcome of the dynamics and on what time scales
these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered
metastable state can emerge and persist for infinitely long time before consensus is reached.
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I. INTRODUCTION

Models from statistical physics have been invoked suc-
cessfully to model social phenomena, such as opinion forma-
tion, voting preferences, and the spreading of information or
disease �1�. All of these phenomena involve a large number
of interacting degrees of freedom �“agents”� which evolve
dynamically in time, subject to external driving forces and
some form of noise. The emergence of final states, subject to
different initial states and driving forces, can often be under-
stood using concepts from nonlinear dynamics, critical phe-
nomena, and phase transitions. Methods from nonequilib-
rium statistical dynamics have been especially useful since
the dynamics underlying these phenomena typically violate
detailed balance �or equivalently, microscopic reversibility�.
As a consequence, the long-time behavior of these models
falls outside the usual equilibrium framework.

In the following, we investigate a simple model for opin-
ion formation in a two-party system, based on a variation of
the voter model. The voter model �2� has attracted much
attention due to several features. First, from a theoretical
perspective it is one of the very few stochastic many-body
systems that are solvable on lattices of any dimension. Thus,
it serves as a benchmark for simulations or perturbative so-
lutions of more complex models. Second, it has broad inter-
disciplinary applications. In chemistry, it has been invoked to
describe the kinetics of catalytic reactions �3,4� or for study-
ing coarsening phenomena �5,6�. In population dynamics and
evolutionary biology, it describes the competition of species
�7,8�. Beyond the framework of the sciences, voter and vot-
erlike models have found many applications to phenomena
which rely on human behavior, e.g., the emergence of col-
lective organization in sociocultural situations �9–26�.

In sociophysics, the voter model combined with well-
known tools from statistical physics, such as various mean-
field-like approaches and exact methods �9,10,14,19,24,25�
or numerical simulations �12,15,17,20,26�, was used exten-
sively to describe the spreading of culture, religion, lan-
guages, or political opinions in social systems. Even though

the model neglects certain social factors, its appealing math-
ematical simplicity allows analytical investigations and can
provide general predictions about such complex systems.
More elaborate variants of the voter model, such as the Ax-
elrod �13,16,28� or Sznajd �12,19� model, were also imple-
mented to study particular types of opinion dynamics.

In physical situations, voter models and their variants
have mainly been studied on homogeneous and translation-
ally invariant spatial structures, i.e., regular lattices. In social
contexts, studies on regular lattices �6,13–17� offer, at best, a
rough approximation of geographic vicinity which generally
leads to a spatial segregation of opinions. With recent ad-
vances in transportation and information technologies, how-
ever, social interactions are no longer limited by geographi-
cal distance so that the interaction patterns between
individuals find a better characterization as complex net-
works. Indeed, in some recent attempts to formulate voter
models on graphs �18,19�, random �20�, scale free �21�, or
small world networks �22,23�, some aspects of the complex
connections between the members of a social system were
taken into account.

Another issue that has not yet been addressed in depth
is the variability of the connections—or relationships—
between individuals in time. The increased mobility of
people and the plethora of new communication tools make it
easy for agents to break or replace old connections and to
generate new ones. Moreover, the actual opinions of two
people will determine whether these two individuals will, or
will not, establish a relationship so that the opinion dynamics
takes place on an adaptively changing network. More pre-
cisely, the full dynamics of such a social network consists of
�i� the individual’s opinion formation process �taking place
on the nodes� and �ii� the evolution of the underlying topo-
logical structure �links�. The coupling between these two
processes reflects how the connections between people influ-
ence their opinions and how their opinions determine, in
turn, their new connections. This possible coevolution of
nodes and links—i.e., of the full network structure—has
been studied only in a few works �24–27,29–31�.
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Our aim is to propose a simple model in which voters
have a choice between two political parties and the dynamics
of opinion formation takes place on an adaptive random net-
work characterized by �i� and �ii�. In Sec. II, first we present
a simple model for opinion dynamics on an adaptive network
and discuss possible interpretations and the relevance of this
particular model. In Sec. III we write a master equation for
the dynamics of the system. The exact calculation of the
transition rates appearing in the master equation is presented
in the Appendix. In Sec. IV we solve this master equation
exactly in the thermodynamic limit and verify the results by
numerical simulations. Depending on the initial conditions
and the parameters of the model, four final states are found:
a disordered state, a completely frozen and �partially� polar-
ized situation, or complete consensus aligned with the opin-
ion of either one of the two parties. These last two states are
absorbing—once the system reaches either one of them, it
can no longer access any other configurations. We should
emphasize that these states, and their names, refer to the
individuals’ opinions, since the links continue to be updated
according to our dynamics. In Sec. V we discuss finite-size
effects. For finite systems, only the absorbing states are truly
stable while the other two states are metastable with finite
�but very large� lifetimes. In Sec. VI, we generalize the
model to more complex situations. We conclude with a sum-
mary and some open questions. A short summary of some of
these results was already published in �32�.

II. MODEL

We consider a network �graph� with N nodes. Each node j
�“individual”� carries a spin � j �“opinion”� which can take
two different values � j = �1, modeling the choice of two
parties. In order to reflect the time-dependent, adaptive na-
ture of linkages between individuals, we implement a dy-
namics in which links and nodes are coupled. At each time
step, we choose a spin at random and update its links to all
other nodes as follows. If the other node carries the same
spin value �i.e., “shares the same opinion”�, the link is estab-
lished with probability p; with probability 1− p, no link will
be present between the two spins. Similarly, if the other node
carries the opposite spin, a link is formed with probability q.
In other words, pairs of nodes carrying equal �opposite� spins
are connected with probability p �q�.

Immediately after the links are updated, the chosen spin is
updated according to a simple majority rule, independent of
its initial state. For example, if it is connected to more posi-
tive than negative spins, its state will be positive in the next
time step regardless of its original state. In the case of a tie,
the spin remains unchanged.

Since spins and links coevolve—i.e., the presence or ab-
sence of a link depends on the state of the spins on the link
and the state of the spins depends on the presence or absence
of links—we call the network adaptive. As an interpretation,
we propose that this model mimics a two-party electoral sys-
tem. During a campaign, the supporters of one party �char-
acterized by � j = +1� are keen to interact with supporters of
the other party �with � j =−1� to try to convince them and
change their opinion. This situation can arguably be de-

scribed by this model with p�q, when each agent has more
interactions with opponents than with agents sharing the
same opinion �according to the motto that “convinced people
do not need to be convinced again”�. On the other hand,
when p�q, the supporters of any party tend to interact more
with individuals sharing the same opinion �according to the
motto “united we are stronger”�. The latter behavior might be
a simplified description of the process of political polariza-
tion, when many members of a given party agree with the
official position of the party, as often occurs in post-election
periods.

Our model is aimed to describe a free public debate in the
sense that it does not consider the effects of central institu-
tions or the mass media; neither lobbying nor organized
strategies are taken into account. As a result, the model may
also be appropriate to describe groups defined by criteria
such as education, religion, or ethnicity rather than political
opinion. Cultural assimilation, the spreading of a language or
of a religion, rumor or fear propagation, and social reforms
are examples of phenomena which can be modeled in this
�simplified� fashion.

III. MASTER EQUATION

To describe the dynamics of the system in complete detail
would require writing a master equation for the N�N+1� /2
variables which fully characterize the state of the nodes and
links. While this task is feasible, the resultant would be quite
complicated. Instead, we note that the presence or absence of
links between a given spin and the remainder of the system is
controlled by simple binomial distributions. The detailed
properties of these distributions, to be discussed below, de-
termine whether this spin will be flipped in the next time
step. Since spins flip one at a time, the dynamics of the nodes
is simply a birth-death process for, e.g., the total number of
positive spins, M. It can be characterized in terms of P�M , t�,
the probability of finding the network with M positive spins
at time t. The average fraction of positive nodes is

��t� � �
M=0

N
M

N
P�M,t� �1�

and can be regarded as the “popularity” of positive opinions
at time t. This popularity takes values in the interval �0,1�,
where �=0.5 characterizes the completely disordered state,
while the extremes ��=0,1� correspond to a complete
ordering of the system, a state we will call “consensus.”
Contrary to the voter model defined on a regular lattice, the
global magnetization �given by m=2�−1� is not conserved
here. Note that the dynamics is still Z2 symmetric, i.e., in-
variant under the global inversion �i→−�i �or simply
M /N→1−M /N�.

The time evolution of � is fully determined by the dynam-
ics of P�M , t�, for which we derive a master equation. Since
the spins flip one at a time and the state with M positive
spins can be reached by a single flip event only from the
states with M −1 or M +1 positive spins, the time evolution
of P�M , t� is a simple birth-death process
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�tP�M,t� = bM−1P�M − 1,t� + dM+1P�M + 1,t�

− �bM + dM�P�M,t� , �2�

where bM denotes the birth rate of a positive spin �i.e., the
rate for flipping a negative spin to positive� and dM its death
rate �flipping from positive to negative�. Both depend on M,
the current number of positive spins in the system. As an
example, we provide the details for evaluating dM. First, it
comes with a factor of M /N, reflecting the probability of
finding a positive spin among the N spins. Next, we ask for
the probability that this spin is connected to exactly k of the
other M −1 positive spins and k� �of the N−M� negative
ones. Since these connections are established randomly, with
probabilities p and q, respectively, the probability of such a
set of connections is just a product of two binomial distribu-
tions, BM−1,p�k�BN−M,q�k��, where we have defined

BL,p��� � �L

�
�p��1 − p�L−�. �3�

Since the selected positive spin will flip provided k�k�, dM
is just the sum over all possible pairs �k ,k�� with the con-
straint k�k�,

dM =
M

N
�
k=0

M−1

�
k�=0

N−M

BM−1,p�k�BN−M,q�k����k� − k� , �4�

where

���� � 	1 if � � 0

0 otherwise.

 �5�

Similar considerations lead to the birth rate

bM =
N − M

N
�
�=0

N−M−1

�
��=0

M

BN−M−1,p���BM,q�������� − �� .

�6�

For the special case q=1− p, the � functions can be elimi-
nated from bM and dM �due to the properties of binomial
distributions; details can be found in the Appendix� to yield

dM =
M

N
�
n=0

N−M−1

BN−1,p�n� , �7�

bM =
N − M

N
�
m=0

M−1

BN−1,p�m� . �8�

These rates depend in a nontrivial way on the current
number of positive and negative spins in the system and thus
embody the adaptivity of the network. They also depend on
the probabilities p and q, and on the size of the system. The
latter dependence is illustrated in Fig. 1 where the upper
�lower� panels show the rates for N=1000 �N=50�.

In the remainder of this paper, we present solutions of the
master equation, given an initial distribution

P�M,0� = ��M,M0� ,

and so

��0� = M0/N � �0.

First, we will focus on the special case q=1− p, with transi-
tion rates given by Eqs. �7� and �8�. In Sec. VII we address
briefly the general case when the rates are given by Eqs. �4�
and �6�.

IV. SYSTEMS WITH LARGE N

In order to appreciate easily the different types of behav-
ior and the parameter regimes where they occur, let us first
consider the thermodynamic limit, N→�. The solutions
found here will guide our analysis of finite-size effects in
Sec. V. For large N, the binomial distribution approaches a
normal distribution. Thus the sum in Eq. �8� is given by the
cumulative distribution function of the normal distribution,
i.e., the Gaussian error function �shown as a solid line in Fig.
2�b��, and the birth rate bM is given by

bM �
N − M

N
��M − Np� �9�
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1
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M/N

dM,bM p=0.1

0 0.5 1
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p=0.3
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M/N

p=0.5

0 0.5 1

M/N

p=0.7
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dM,bM p=0.1

0 0.5 1

M/N

p=0.3
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M/N

p=0.5

0 0.5 1

M/N

p=0.7

FIG. 1. The death �dM� and birth �bM� rates �solid and dashed
lines, respectively� given by Eqs. �7� and �8� for different probabili-
ties p and q=1− p. Upper panels N=1000, lower panels N=50. For
fixed p, there are three different regimes of behavior bounded by
Eq. �11�.
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FIG. 2. �a� The binomial distribution BN−1,p�k� for N=1000 and
p=0.3 approaches a Gaussian centered at Np=300. �b� The cumu-
lative distribution functions appearing in Eqs. �8� and �7� �solid and
dotted lines, respectively�.
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apart from a region of width �Np�1− p� around Np. The
death rate dM is described by the complementary error func-
tion �the dotted line in Fig. 2�b�� and given by

dM �
M

N
��N�1 − p� − M� �10�

apart from a region of the same width as above around
N�1− p�.

These simplified forms of the transition rates �see the up-
per panels in Fig. 1 for large N� allow us to determine easily
the late-time properties of the model. For fixed p there are
three different regimes, depending on whether bM �dM,
bM �bM, or bM �dM �0. Starting with a value, �0, for the
initial density of positive spins, the panels in Fig. 1 allow us
to determine whether this value will grow �bM �dM�, de-
crease �bM �dM�, or stay approximately constant
�bM �dM �0�. The boundaries between these regimes can be
obtained from Eqs. �9� and �10� as

�0 = p, and �0 = 1 − p . �11�

For p�0.5 and �0� p, we find that M /N stays below p at
later time also. Indeed, in the approximations �9� and �10�,
we have a pure death process

�tP�M,t� = �M + 1�P�M + 1,t� − MP�M,t� , �12�

which leads to the extinction of the positive population. The
solution of this master equation shows that the steady state,
��� limt→���t�=0, is reached exponentially as

��t�  �0 exp�− t� . �13�

Similarly, if p�0.5 and �0�1− p, we have a pure birth pro-
cess and the system relaxes exponentially to the state ��=1
on the same characteristic time scale �due to the Z2 symme-
try�.

In the intermediate region �0� �p ,1− p�, the dynamics is
described by

�tP�M,t� = �M + 1�P�M + 1,t�

+ �N − M + 1�P�M − 1,t� − NP�M,t� , �14�

and the system reaches a disordered phase: ��=0.5. Again,
the relaxation is exponential, with a characteristic time scale
1/2,

��t� − �� = ��0 − ���exp�− 2t� . �15�

For finite systems, only the absorbing states can be true
steady states of the system, and so this state should be meta-
stable. However, its lifetime is enormous, being O�eN�, and
will be studied further in Sec. V.

For p�0.5, the pure death and pure birth regimes are the
same as for p�0.5. A small minority ��0�1− p� will be-
come extinct; a large majority ��0� p� will win. However, a
new feature appears in the interval �0� �1− p , p�, where the
system seems to acquire infinite memory. Both the death and
birth rates vanish in this region, according to the approxima-
tions �9� and �10�, so that the master equation reduces to

�tP�M,t� = 0, �16�

whence the fraction of positive spins remains frozen at its
initial value

��t� = �0. �17�

This behavior is understandable. If an individual “talks” only
very rarely to those with the opposite opinion, essentially no
changes can take place and the society remains “static.” As
in the case of p�0.5, this is also a metastable state for finite
systems, with a lifetime of O�eN�.

Our analytic findings are tested by direct simulations �33�
on a network with N=1000 nodes. The relaxation into the
late-time behaviors is clearly displayed in Fig. 3�a� for
p�0.5 and Fig. 3�b� for p�0.5. Insets show the relaxations
of type �13� to the absorbing state and of type �15� to the
disordered state. Note that in our simulations Monte Carlo
time tMC is incremented only after every node has had a
chance to flip, so that tMC= t /N.

To illustrate our findings further, Fig. 4 shows the out-
come of the voter dynamics for two fixed initial fractions of
the positive population: one starting from a minority
�0�0.5 and one starting from a majority �0�0.5. For small
p, the system reaches a disordered state, independent of
�0. The “open mindedness” of the population �reflected by a
large probability 1− p to communicate with the opposite
party� leads to an equal distribution of opinions. In contrast,
an “inflexible attitude” �characterized by a large p of linking
up with similar opinions� leads to a fixed, unchanging distri-
bution of opinions. For intermediate values of p, the system
reaches a completely ordered state: all voters reach the same
opinion, namely, that of the initial majority.
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FIG. 3. Time evolution of the fraction M /N of positive spins for
a network of N=1000 nodes, for �a� p=0.3 and �b� p=0.7. The
values are averaged over 1000 runs. Time is measured in Monte
Carlo steps, tMC= tspin-flip /N. Insets show the exponential relaxation
to the final states.
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FIG. 4. Outcome of the voter dynamics as function of p for two
values of M0 /N. Solid �dotted� line shows M0 /N=0.3�0.7�.
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Summarizing our findings so far, we conclude that there
are four distinct regimes, depending on the relative magni-
tudes of �0 and p. In a �p ,�0� phase diagram, these different
regimes are bounded by Eq. �11�. The numerical results for
the possible outcomes of the voter dynamics on the adaptive
network, for all parameters p and initial fractions �0 of the
positive population, are shown in Fig. 5. The four different
regimes can be characterized as follows: a perfect balance of
opinions, a completely static situation, or perfect consensus
�all positive or all negative�. In Sec. V, we will discuss how
these findings are modified in finite systems. Clearly, the two
completely ordered states ��=0,1� are absorbing states.
Thus, they will eventually be reached from the other two
�metastable� states. Two interesting questions remain. First,
in which of the two absorbing states will each metastable
state arrive, and second, how do the relaxation times depend
on system size?

V. FINITE-SIZE EFFECTS

Generally, there are two time scales in these systems. On
short time scales, the outcome of the voter dynamics follows
our discussion above and can be illustrated by Fig. 5. In this
section, this will be termed the short time scale behavior of
the model.

On long time scales, however, the only possible steady
states of the systems are the completely ordered absorbing
states. To appreciate which of the two absorbing states is
reached by the system after long times, we directly iterate the
original master equation, Eq. �2�, for the specific case of
N=100. Aiming to obtain the final outcome of the voter dy-
namics, we evaluate the probabilities P�M ,�� for all
M � �0,100�. We choose parameters p=0.3 and p=0.7, as
well as starting with all initial conditions M0� �0,100�. Not
surprisingly, apart from M =0 and 100, all probabilities
P�M ,�� vanish, so that the final state can be
characterized by just one probability, say, P�N ,��. Clearly,
P�0,��=1− P�N ,��. The results are displayed in Fig. 6,
where P�N ,�� is shown as a function of the initial �0. In this
picture, P�N ,��=0�1� for a given �p ,M0� implies that all
such initial configurations ended in the absorbing state with
only negative opinions �only positive opinions�.

For p�0.5 �Fig. 6�a��, the dynamics reduces to a simple
majority rule: the final state is completely ordered, following
the opinion of the initial majority. The transition between the
two absorbing states takes place at �0=0.5. One should con-

trast this with the “short time” behavior �Fig. 5�, where a
state corresponding to static opinions ���t�=�0� appears if
�0� �1− p , p�. On “long time” scales, we see that this state
disappears. Eventually, the majority wins.

For p�0.5 �Fig. 6�b��, a small minority �0� p disappears,
while a big majority �0�1− p wins the competition, as in the
case of N→�. A novel effect occurs for intermediate values
of the initial positive population: �0� �p ,1− p�. Here, a fully
disordered �but metastable� state develops on the short time
scale, regardless of the initial condition. On long time scales,
the system randomly falls into one of the two absorbing
states. Thus, P�N ,��= P�0,��=0.5 �Fig. 6�b��. The initial
population �of either opinion� is equally likely to become
extinct. In this regime, consensus is achieved, but which
opinion survives is completely random.

After having developed a qualitative picture, we analyti-
cally calculate the final state of the system with the exact
probabilities P�M ,�� for arbitrary system size N. To do so,
we write the master Eq. �2� in a matrix representation

�t�v�t�� = L�v�t�� , �18�

where �v�t�� is the N+1 dimensional column vector with
components P�M , t�, M =0,1 , . . . ,N, and the time evolution
operator can be read off from Eq. �2� as

L =�
0 d1 0 . . .

b0 − �b1 + d1� d2

0 b1 . . .

. . . . . . dN

bN−1 0
� . �19�

Considering the symmetry in L, we have from Eqs. �7� and
�8�

bN−k = dk. �20�

The absorbing state condition is reflected in b0=dN=0.
The steady states of the system are the eigenvectors of L

with zero eigenvalues. The two absorbing states correspond
to the eigenvectors
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FIG. 5. �Color online� The fraction of positive spins M /N after
tMC=10, as function of p and M0 /N for a network of N=1000
nodes in a �a� three-dimensional plot and a �b� two-dimensional
projection displaying clearly the phase transitions.
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FIG. 6. The probability P�N ,�� to reach the state with M =N
positive spins at infinite times: P�N ,��=0 implies certain extinc-
tion of the positive population, while P�N ,��=1 represents a purely
positive population. The figure displays two different lines which
are not distinguishable due to the good agreement: �i� results ob-
tained from direct iteration of the master equation �Eq. �2�� and �ii�
the vector element P�N ,��= �1−xM0

� /2 from Eq. �30�.
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�00� � �
1

0

]

0
� and �0N� � �

0

0

]

1
� . �21�

Each is already normalized in the sense that �e �00,N�=1,
where �e���1,1 , . . .1� is the vector used for normalization.
To find their adjoints, it is convenient to study the symmetric
and antisymmetric states

�0�� �
1

2
��00� � �0N�� =

1

2�
1

0

]

�1
� , �22�

so that �e�, being symmetric, is naturally the adjoint of �0+�.
For convenience, we can denote it as

�0+� � �e� . �23�

The adjoint of �0−� is an antisymmetric vector, given by
0= �0−�L. For N=2n, there is an odd number of elements in
this vector: �0−���	0 ,	1 , . . .	n−1 ,	n ,−	n−1 , . . .−	1 ,−	0�.
For N=2n+1, the adjoint contains 2n+2 elements, as
follows: �0−���	0 ,	1 , . . .	n ,−	n , . . .−	1 ,−	0�.

For N=2n, the first n equations �k=0,1 ,2 , . . . ,n−1�, ob-
tained from 0= �0−�L, read

0 = 	0d1 − �b1 + d1�	1 + b1	2

]

0 = 	n−1dn − �bn + dn�	n − bn	n−1. �24�

Due to the symmetry �20�, the equations for k=n , . . . ,2n are
the same as for k=0,1 , . . . ,n−1, and Eq. �24� is satisfied by
	n=0 �since bn=dn for this case�. The remaining equations
�k=0, . . . ,n−2� can be written in the general form

0 = 	k−1dk − �bk + dk�	k + bk	k+1

or as a recursion

dk
k−1 = bk
k with 
k � 	k − 	k+1.

Using the notation rk�bk /dk, we have


k = rk
k+1 = �
�=k+1

n−1

r�
n−1,

with 
n−1=	n−1 which starts the recursion. Since

	 j = �
k=j

n−1


k = �
k=j

n−1

�
�=k+1

n−1

r�
n−1,

we can express all the elements 	 j in terms of a single un-
known, 	n−1,

	n−2 = �rn−1 + 1�	n−1,

	n−3 = ��rn−2 + 1�rn−1 + 1�	n−1,

]

	0 = ���r1 + 1�r2 ¯ + 1�rn−1 + 1�	n−1.

Since all the rates are positive, it is guaranteed that the 	k’s
are monotonically decreasing in k. To construct the unique
adjoint, we impose normalization �0− �0−�=1 which means
that

�0−� � �1 x1 x2 ¯ − x2 − x1 − 1� , �25�

where

xj �
���rj+1 + 1�rj+2 + 1�rj+3 ¯ + 1�rn−1 + 1

���r1 + 1�r2 + 1�r3 ¯ + 1�rn−1 + 1
�26�

for j=1, . . . ,n−1 and xn=0. Note that we automatically have
xj �1.

For N=2n+1, the central two equations read

0 = 	n−1dn − �bn + dn�	n − bn	n,

0 = 	ndn+1 + �bn+1 + dn+1�	n+1 − bn+1	n−1,

which are the same when we take into account dn+1=bn and
bn+1=dn due to the symmetry, Eq. �20�. As for the start of the
recursion, we now have 
n=2	n instead of 
n−1=	n−1, but
the left eigenvector �0−� is still given by Eqs. �25� and �26�.
These will allow us to compute explicitly the final state

���� � lim
t→�

��t� . �27�

Given an initial state ��0�, the solution to the master equation
is

��t� = �


e−�t�����0� , �28�

where �� and �� are the left and right eigenvectors of L
corresponding to the eigenvalues �. Equation �28� projected
into the space of zero eigenvalues gives

���� = �0+��0+��0� + �0−��0−��0� . �29�

For example, if the initial state is a population with M0
�N /2 positive spins, the final state is

���� =�
P�0,��
P�1,��

]

P�N − 1,��
P�N,��

� =
1

2�
1 + xM0

0

]

0

1 − xM0

� . �30�

This result shows that, indeed, in the t→� limit, the sys-
tem arrives in one of its two absorbing states. Moreover, it
provides the relative probabilities with which either will be
reached, as a function of the initial M0.

Finally, we plot the element P�N ,��=0.5�1−xM0
� of Eq.

�30� for N=100, p=0.7 and p=0.3 in Figs. 6�a� and 6�b�,
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respectively. The agreement with the direct iteration of the
master equation is so good that the two lines cannot be dis-
tinguished.

VI. LIFETIMES OF THE METASTABLE STATES

In finite systems, the two metastable states �“disordered”
and “static”� will eventually relax to the absorbing states
�full consensus�. In this section, we investigate the time
scales on which this relaxation occurs. Its dependence on the
system size �number of nodes, N� will determine whether
this relaxation can be observed on physical �or simulation�
time scales or whether the metastable states will play the role
of true thermodynamic phases, at least for all practical pur-
poses.

The relaxation of the metastable state to the absorbing
state is given by the smallest nonzero eigenvalue � of the
time evolution operator L as

�  e−�t = e−t/�, �31�

where �=1 /� is the characteristic lifetime of the metastable
state. Thus, we expect an exponential decay of the popularity
� to its value, ��, as t→�, or equivalently, an exponential
decay of the positive population M /N. To check this relation,
we performed numerical experiments for different systems
ranging in size from N=10 to N=80. We choose as initial
condition a value �0� �p ,1− p� and p�0.5. In this case, the
“disordered” metastable state with �=0.5 emerges first be-
fore the system relaxes to consensus. The results of the nu-
merical simulations are presented in Fig. 7. Indeed, the re-
laxation is exponential and becomes slower with increasing
system size. The decay rates �sim�N� are easily obtained from
the slopes of the straight lines in the log-normal plot.

We also evaluate the first nonzero eigenvalues, ��N�, of
the time evolution operator L, through direct �numerical� di-
agonalization of Eq. �2�. These eigenvalues, evaluated for
systems of size N=10,20, . . . ,80, are plotted in Fig. 8 along
with the simulated rates, �sim�N�, showing a good agreement.
As the system size increases, the decay rates decrease expo-
nentially, indicating that the lifetime � increases with N as

�  ea�p,M0�N. �32�

This behavior holds for the relaxation from both the dis-
ordered and the static metastable states into the absorbing
states, as illustrated in Figs. 9�a� and 9�b�. The prefactor a�p�
in the exponential depends on the value of the parameter p.
For p=0.3 and M0 /N=0.4, we find a�p ,M0��0.08, and for
p=0.8 and M0 /N=0.4, the result is a�p ,M0��0.11. In con-
clusion, we note that all times here are measured relative to
Monte Carlo time, tMC.

A simple estimate of the time to consensus for a network
of N=1000 voters with p=0.3 shows that it may take as
many as 1036 spin flips to reach one of the absorbing states.
Since human societies are much larger, consensus is practi-
cally impossible and the metastable states will persist for
practically infinite times.

VII. GENERALIZATION TO qÅ1−p

In the previous sections, we discussed in some detail a
case with a special symmetry: links between agents holding
similar opinions are present �absent� with probability
p �1− p� and links between agents holding opposite opinions
are present �absent� with probability q�1− p �1−q� p�. Of
course, this symmetry does not naturally appear in real social
systems. There is no a priori reason to assume any kind of
relation between the probabilities p and q, and in general,
they should be considered as independent parameters of the
model.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0 20 40 60 80 100tMC

ln(M/N)

N=20
N=30 N=40

N=50

N=60

N=70

N=80

FIG. 7. �Color online� Relaxation of the disordered metastable
state with �=0.5 to the completely ordered absorbing state �=0 for
networks of different sizes. The simulation results �black lines� are
averaged over 1000 runs. Straight �red� lines are the fitted exponen-
tials. The parameters are p=0.3, M0 /N=0.4.
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FIG. 8. �Color online� The first nonzero eigenvalues �blue
squares� of the time evolution operator L and the slopes of the
relaxations plotted in Fig. 7 �red crosses�, as a function of the sys-
tem size. The parameters are the same as in Fig. 7.
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FIG. 9. Time � needed to reach consensus vs system size N for
�a� p=0.3, M0 /N=0.4 and �b� p=0.8, M0 /N=0.4. Insets show the
exponential dependence on N.
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Given that we have an intuitive and quantitative picture of
the opinion dynamics for q=1− p, we can easily generalize
our analysis for arbitrary q�1− p. In the general case, the
transition rates in the master equation, Eq. �2�, are given by
Eqs. �4� and �6�. The simplification, to Eqs. �7� and �8�, is no
longer possible, but we can still obtain intuitive insight into
these rates. Also, needless to say, they are easily computed
numerically. First, we consider the death rate dM, for large
systems �N→��, and evaluate the sums approximately. If the
centers of the two binomials, �M −1�p and �N−M�q, are fur-
ther apart than the sum of their half widths, given by
1 /2��M −1�p�1− p�+1 /2��N−M�q�1−q�, the typical situa-
tion is depicted in Fig. 10�a�.

To continue, we recall that dM is associated with picking a
positive spin and counting the number of connections to
positive �k� and negative �k�� spins. Since the two binomials
are far apart, they select the values of k and k� from two
well-separated regions. Hence, we can easily decide whether
k�k� or not, i.e., whether the spin will flip or not. Thus, we
can eliminate the � function from Eq. �4� and obtain

dM �
M

N
	1 if Mp � �N − M�q

0 if Mp � �N − M�q .

 �33�

In a similar fashion we can eliminate the � function from the
expression Eq. �6� for the birth rate bM �see Fig. 10�b��,
giving

bM �
N − M

N
	0 if �N − M�p � Mq

1 if �N − M�p � Mq .

 �34�

Thus, the sums in Eqs. �4� and �6� will behave as the Gauss-
ian error function and its complementary error function �see
Fig. 11�, similar to the special case discussed previously. The
dependences of the transition rates on M /N, for a few se-
lected values of p and q, are shown in Fig. 12.

We can see immediately that the late-time properties of
the model, the relaxations to the steady states, the existence
of the metastable states, and the particular forms and solu-
tions of the master equation in the different regimes are com-

pletely analogous to the special case q=1− p. The only dif-
ference is a shift in the phase boundaries. Their locations can
be obtained from Eqs. �33� and �34� as

�0 =
p

p + q
and �0 =

q

p + q
. �35�

For probabilities p�q and �0� p / �p+q�, the pure death
process as in Eq. �12� leads to the extinction of the positive
population and the state ��=0 is reached exponentially as
described by Eq. �13�. If �0�q / �p+q�, we have a pure birth
process and the system relaxes exponentially to the state
��=1. In the intermediate region �0� �p / �p+q� ,q / �p+q��,
the system reaches exponentially the disordered phase ��

=0.5, with a characteristic time scale 1/2.
For probabilities p�q, a small minority �0�q�p+q� will

become extinct and a large majority �0�q / �p+q� will win.
In the interval �0� �q / �p+q� , p / �p+q��, the fraction of posi-
tive spins remains frozen at its initial value.

The phase diagram in the �p ,�0� plane, along with the
phase boundaries, is shown in Fig. 13 for different choices of
the parameter q. Larger values of q indicate a greater will-
ingness to connect with individuals holding an opinion op-
posed to ones own. This behavior extends the region in
which the opinions balance ��=1 /2, the “disordered” phase�.
For smaller q, most interactions tend to be restricted to
people with similar beliefs and so the society tends to be-
come more “static.”

With regards to finite-size effects, our study in Sec. V did
not rely on any assumptions regarding the specific form of
the birth and death rates. Hence, the analytic results obtained
there remain unchanged. In finite systems, the metastable
states will still decay on long time scales and consensus will
be reached. The relative probabilities of the absorbing states
are still given by the same expression, Eq. �30�.

VIII. CONCLUSIONS

In this study, we proposed and investigated an adaptive
model for opinion dynamics in which the agents and the
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FIG. 10. Illustration of the binomial distributions appearing in
�a� Eq. �4� and �b� Eq. �6�. Parameters used for the plot are p
=0.3, q=0.5, M =400, and N=1000.
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FIG. 11. The cumulative distribution functions appearing in Eqs.
�6� and �4� �solid and dotted lines, respectively�.
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regimes of behavior bounded by Eq. �35�.
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underlying network structure coevolve. The opinions of the
agents determine their connections, and these connections, in
turn, play an important role for how an agent changes his or
her opinion.

Our conclusions are most easily understood in terms of a
two-party system. In large societies, the best strategy for a
minority group is to establish many contacts with its oppo-
nents. In this way, it can convince half of them and keep this
balance for a long time. If the same minority group is less
open for discussions, it cannot overcome the majority, but at
least it will not disappear. It is tempting to speculate how
these results might be applied to real social systems. Will
two-party systems, once formed, persist for long times? Will
bilingual regions remain bilingual? Will relatively isolated
parties continue to receive the same, almost constant percent-
age of the vote? Will closed religious communities continue
to exist without gaining or losing members?

Our findings depend drastically on the size of the system.
In large systems, coexistence of different opinions is typical
and persists for long times. In contrast, in smaller systems,
consensus is reached after much shorter times. This may be
an explanation for an empirical study of the number of lan-
guages in the Solomon Islands �34�. It was found that small
islands �less than 100 square miles� have a single language,
but on islands of larger size, the number of languages in-
creases.

Even though our model neglects certain social factors
�e.g., spatial and age structures, a spectrum of opinions, etc.�

and it is defined for one particular type of agent dynamics, its
attraction rests in its mathematical simplicity which allows
an analytical investigation of the properties. Our model pro-
poses a mechanism for characterizing the adaptive nature of
interpersonal relations in social models and can thus serve as
a “baseline model” for such systems. Of course, many ques-
tions remain open and should be investigated in order to
place our findings into a broader context. For example, in the
dynamics considered here, the topology of the network has
no memory: after each spin flip, all links are removed and
re-established according to the probabilities p and q. If links
are left unchanged unless one of the two associated nodes are
updated or if links are updated only after several spin up-
dates have occurred, the dynamics acquires a �short-term�
memory. Preliminary results indicate that the phase diagram
remains unchanged but the relaxation into the different
phases is affected. Another interesting issue concerns the
presence of noise, especially if it allows individuals to
change their opinions spontaneously, with a small probability
�corresponding to a finite temperature in the spin picture�.
This would certainly eliminate the absorbing states, replac-
ing them with stationary states characterized by a small but
finite density of the minority opinion. It is not clear how the
presence of this type of noise would affect the metastable
states. Certainly, it might increase the possibility of a large
fluctuation which would drive the system toward the stable
state. In future work, we will also combine the adaptive na-
ture of the network presented here with other types of agent
dynamics �for instance epidemic dynamics or Axelrod opin-
ion dynamics� and the type of underlying network as well as
the dynamics of the connections can also be refined. For
example, the network can be given a spatial structure �a
“metric”� or the links can be directed or heterogeneous, re-
flecting the importance of different personality types.
Clearly, many open questions remain for further study.
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APPENDIX: THE BIRTH AND DEATH RATES

Here, we compute the double sum appearing in Eq. �4�. It
involves the product of two binomial distributions. Labeling
the two �independent� random variables X1 and X2, taking
values k=0,1 , . . . ,M −1 and k�=0,1 , . . . ,N−M, respec-
tively, the two corresponding probability distributions are
given by

BM−1,p�k� =
�M − 1�!

k ! �M − 1 − k�!
pk�1 − p�M−1−k. �A1�

and
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FIG. 13. �Color online� The fraction of positive spins M /N after
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BN−M,1−p�k�� =
�N − M�!

k� ! �N − M − k��!
pN−M−k��1 − p�k�.

�A2�

According to Eq. �4�, the selected spin will flip if k�−k�0.
This suggests that we consider the distribution of the differ-
ence, D�X2−X1, defined via

PD�K� � �
k=0

M−1

�
k�=0

N−M

BM−1,p�k�BN−M,1−p�k���K,k�−k.

We now invoke a well-known result from the theory of gen-
erating functions. Defining GD�z�, the generating function
associated with PD�K�, via

GD�z� � �
K

PD�K�zK,

and gX1
�z� and gX2

�z�, associated with BM−1,p�k� and
BN−M,1−p�k��, via

gX1
�z� � �

k

BM−1,p�k�zk = ��1 − p� + pz�M−1,

gX2
�z� � �

k�

BN−M,1−p�k�� = ��1 − p�z + p�N−M ,

we can write the generating function of the difference vari-
able in terms of gX1

�z� and gX2
�z�,

GD�z� = gX1
�z�gX2

�1/z� .

Inserting the explicit expressions, we obtain

GD�z� = ��1 − p� + pz�N−1�1/z�N−M ,

where the first factor is easily recognized as the generating
function of a binomial distribution, BN−1,p���, and the second
factor is associated with a constant distribution, p�s�
=�s,N−M. The variable � can take values �=0,1 , . . . ,N−1,
while the difference variable D is shifted to the left from �
by N−M, taking values K=�− �N−M�=−N+M ,−N+M
+1, . . . ,M −1 with probability BN−1,p���. Since expression
�4� contains only terms for which K�0, we have to sum up
only the first N−M terms, i.e.,

dM =
M

N
�
K=0

N−M−1

BN−1,p�K� . �A3�

Following similar considerations, Eq. �6� results in Eq. �8�.
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